Welcome to Women's Health Empowerment Series on Functional Medicine.

This session is designed as a learning opportunity and your participation is optional. The material discussed at this session is intended for informational purposes only and does not necessarily reflect the views of the GE company.

Intro to Functional Medicine

Modern solutions for modern health care needs.

Tressa Breindel, LAc, MSOM InHealthRVA.com

804-601-6698 tressa@InHealthRVA.com

Intro to Functional Medicine

- 1. Filling the health care gaps
- 2. The Functional medicine paradigm.
- 3. Functional medicine and women's health.
- 4. Topics in Functional medicine.
 - a. The gut microbiome
 - b. Hormones
 - c. The immune system and inflammation
 - d. Toxicants & detoxification
- 5. How to find a Functional medicine practitioner.

Why are we here?

Why are we talking about this?

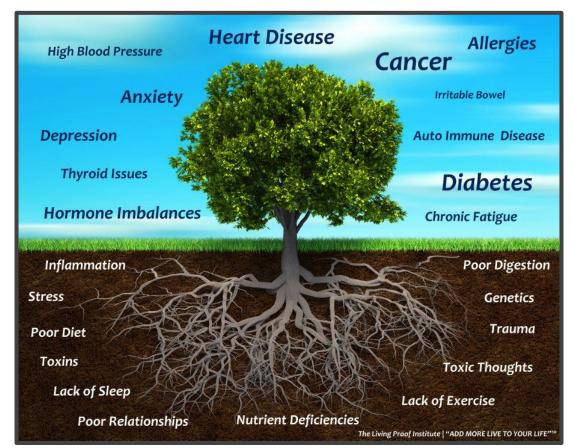
Modern day health care leaves gaps in our health care needs.

Current medical paradigm	Current medical needs				
Acute, reactive care	Prevention and reversal				
Disease management	Health and wellness optimization				
Medicating symptoms	Investigating and treating underlying causes				
Single cause disease	Multiple, chronic conditions with multiple, complex underlying causes				

Today's health care needs: Multiple, chronic conditions

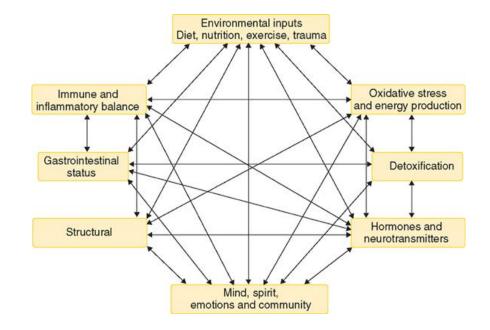
...With multiple & complex underlying causes.

Single cause	Multiple/complex underlying causes			
Polio, tuberculosis, car accident, Down's syndrome, sickle cell anemia, Rickett's, (colds and flus).	CVD, cancer, diabetes, high blood pressure, hypothyroidism, Alzheimer's/dementia, fatigue, mood disorders, autoimmune disease, cancer, PMS, fertility, menstrual disorders gastrointestinal and digestive disorders, addiction.			

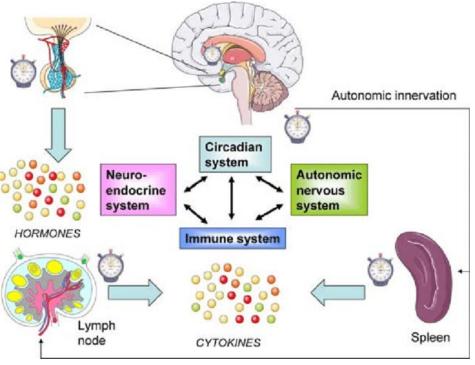


FIlling the Gaps: Functional Medicine

- FM **investigates the underlying mechanisms** that lead to health symptoms and diseases.
 - Lab investigations.
 - Narrower interpretation of lab values.
 - Life history analysis.


FM paradigm: Underlying Mechani

Filling the Gaps: Functional Medicine


- It focuses on prevention, disease reversal and health optimization.
- It understands that same-named diseases can have multiple causes and these causes can vary from individual to individual.

The Functional Medicine Paradigm

• Is the clinical application of systems biology and biochemistry research.

Review article

The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity

Atherosclerosis Volume 271, April 2018, Pages 203-213

Cardiovascular disease associated with obesity and autoimmunity is the leading cause of death in these populations and significant residual risk remains despite current treatment approaches. Obesity, type 1 diabetes mellitus (T1DM), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) are linked to chronic inflammation, and subjects with these disorders have characteristic shifts in their gut microbiome composition. Recent data suggest that alterations in gut microbial and metabolic composition may be responsible, in part, for induction of chronic inflammation, thus promoting cardiovascular disease. Common microbiome changes observed in obesity, T1DM,

Original Research Reports

Premenstrual syndrome is associated with altered cortisol awakening response

Lulu Hou, Yamei Huang & Renlai Zhou 💟

Pages 640-646 | Received 15 Aug 2018, Accepted 13 Apr 2019, Published online: 06 May 2019

Previous studies have revealed stress-induced dysregulation of hypothalamic-pituitary-adrenal (HPA) axis in women with premenstrual syndrome (PMS). So far, however, the results about the relationship between HPA axis dysregulation and PMS are mixed. To this end, it is necessary to investigate the basal activity of the HPA axis in women with PMS instead of only assessing a certain stressor. Therefore, this study evaluated the relationship between the cortisol awakening response (CAR) and PMS. Thirty-two women with PMS (mean age 22.47 ± 2.20) years) and 36 healthy controls (mean age 22.28 ± 2.43 years) were included in this study. Saliva samples of our participants were collected successively at 0, 30, 45, and 60 min after awakening to assess CAR during each of two phases of the menstrual cycle (the mid-follicular phase and the late luteal phase). The results showed a significantly attenuated CAR in women with PMS compared with the healthy controls, especially at 45 and 60 min after awakening, regardless of the menstrual cycle phases. Furthermore, there was a significant negative correlation between PMS severity as measured by PMS scale and AUCi (i.e. the Area Under the Curve with respect to increase) in the mid-follicular phase. Our findings suggested that an attenuated CAR activity profile may be an important risk factor for the development of PMS.

Sum: The Functional Medicine Paradigm

- Symptoms and diseases are the expression of **underlying mechanism**.
- We should investigate and treat the causes, alleviate the symptoms.
- Most diseases/syndromes/symptoms have multiple underlying causes.

Sum: The Functional Medicine Paradigm

- Each individual is biochemically and physiologically unique.
 - Same disease: different mechanisms.
 - Different diseases: same mechanisms.
- Support the body's innate ability to self-regulate and heal.
- Healthcare should be preventative.
- Healthcare should optimize health, not just treat disease.

"Health is not just the absence of disease. Health is a state of optimal well-being." -World Health Organization

Functional Medicine & Women's Health

Functional Medicine and Women's Health

- Women have different health issues than men.
- We may also develop the same diseases for different reasons.
- Women's health issues are multifactorial.
- Diseases are researched and treatments are standardized in men.
- Women's health care issues have limited, symptom-based treatment options.

<u>Why do we need FM for Women's</u> <u>Health?</u>

- 75% of autoimmune disorders are in women.
- Women are 5-8 x more likely to have hypothyroidism.
- IBS is the most common GI disorder, is ~2x more prevalent in women and is functionally different in women.
- Heart disease is the leading cause of death in women.
 - Women are more likely to have a 'silent' heart attack.
 - The role of menopause and heart disease.
 - Heart disease can present differently in women.
 - Most of what we know about heart disease comes from studies of middle aged men.

Women's Health Care Options are Limited

Current medical options:

- Birth control
- Antidepressants
- Pain-control
- Surgical procedures

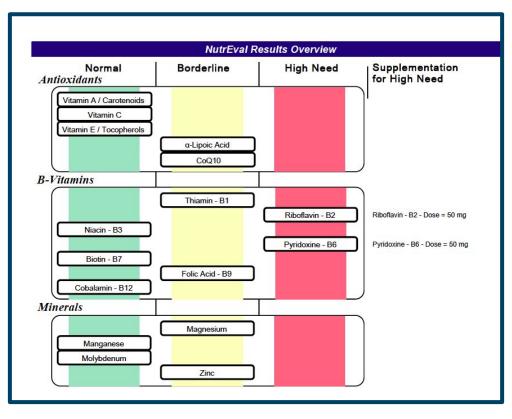
FM Options: Analysis and Treatment of:underlying drivers:

- Hormones (thyroid, adrenal, sex)
- Gut microbiome
- Nutrition/nutrient status
- Toxicants/detox
- Lifestyle and stress management
- Infections and immune support

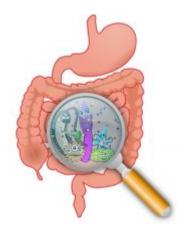
Topics in Functional Medicine

Topics in Functional Medicine

- 1. The Foundation
 - a. Diet, nutrients, sleep, stress management, movement.
- 2. The gut microbiome and digestion.
- 3. Advanced hormone analysis.
- 4. The immune system, inflammation and infection.
- 5. Toxicity and detoxification.
- 6. Genetics.
- 7. Mitochondrial function.
- 8. Oxidative stress and antioxidants.

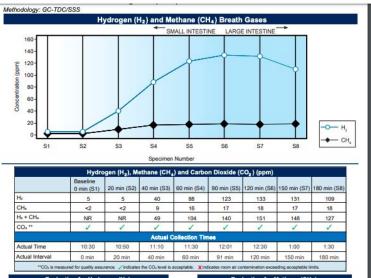

The Foundations

- 1. Diet and nutrients
 - a. Eat real food mostly plants
- 2. Sleep
 - a. Solid 7-8 hours/night
- 3. Stress management and mindfulness
 - a. Mindfulness-Based Stress Reduction (MBSR)
 - b. Neurofeedback
 - c. Meditation
- 4. Movement


Nutrient Testing

The Gut Microbiome and Digestion

- 100 trillion microbes live in your gut.
 - 10x more cells than you.
- 75-80% of your immune system is in your gut.
- "Leaky gut" is likely involved in all autoimmune disorders (including hypothyroidism).
- Microbes eat what you eat.

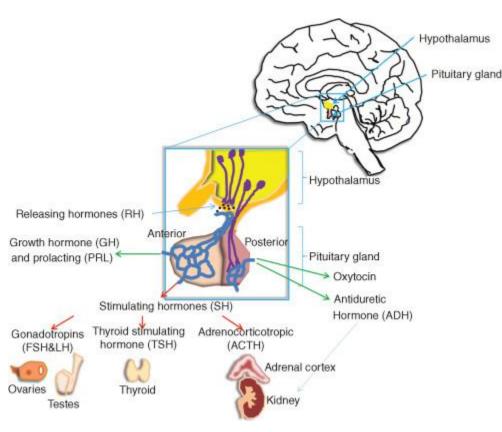


Comprehensive Stool Analysis / Parasitology x3

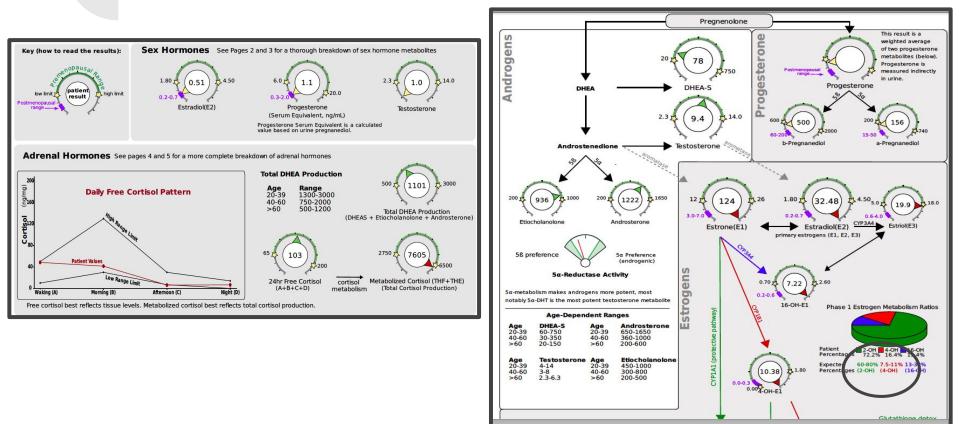
Comments:

	BACTERIOLOGY CULTURE	
Expected/Beneficial flora	Commensal (Imbalanced) flora	Dysbiotic flora
4+ Bacteroides fragilis group	3+ Alpha hemolytic strep	4+ Proteus mirabilis
3+ Bifidobacterium spp.	4+ Gamma hemolytic strep	
3+ Escherichia coli	2+ Staphylococcus aureus	
3+ Lactobacillus spp.		
3+ Enterococcus spp.		
3+ Clostridium spp.		
NG = No Growth		
	BACTERIA INFORMATION	
uspected, a Comprehensive Clostridium culture o commensal (Imbalanced) bacteria are usually i evels o loral contraceptives or other medications; p ysbiol	or toxigenic C. difficile DNA test is recommended. neither pathogenic nor beneficial to the host GI t	cterial imbalance. If <i>C. difficile</i> associated disease i ract. Imbalances can occur when there are insufficier
number		
	YEAST CULTURE	
		tic flora
oral con	Dysbio	tic flora ndida albicans
oral con	Dysbio	
oral con	Dysbio 2+ Ca	(10) (10)

j)j



Hormone Analysis


Hypothalamus-pituitary-adrenal axis dysregulation (HPA-axis dysregulation

- Full thyroid panel
- Sex hormones
 - Estrogen, progesterone, testosterone and metabolism
- Adrenals
 - Cortisol
- Lots more we don't measure or understand!

Advanced Hormone Testing

		Average	1.00 - 3.00	
Homocyst(e)ine	6.4	High umol/L	>3.00 0.0 - 15.0	01
TSH	2.190	uIU/mL	0.0 - 15.0 0.450 - 4.500	01
Thyroxine (T4)	6.1	lg/dL	4.5 - 12.0	01
	27	lg/all %	4.5 - 12.0 24 - 39	01
I3 Uptake Free Thyroxine Index	1.6	8		01
-	97		1.2 - 4.9	0.1
Triiodothyronine (T3)		ng (dL	71 - 180	01
Triiodothyronine (T3), Free	2.8	pg/mL	2.0 - 4.4	01
Reverse T3, Serum ^A	21.1	n¢/dL	9.2 - 24.1	02
T4,Free(Direct)	1.06	rg/dL	0.82 - 1.77	01
Thyroid Peroxidase (TPO) Ab	8	IU/mL	0 - 34	01
Thyroglobulin Antibody Thyroglobulin Antibody me	<1.0 asured by Bec	IU/mL kmar Coulter Meth	0.0 - 0.9 nodology	01
Insulin	8.7	uIU/mL	2.6 - 24.9	01
Copper, Serum ^A	112	ug/dL Detectio	72 - 166 on Limit = 5	02
Zinc, Plasma or Serum ^B	94	ug/dL Detectio	56 - 134 on Limit = 5	02
Methylmalonic Acid, Serum	143	nmol/L	0 - 378	02
Disclaimer:				02
This test was developed a determined by LabCorp. It by the Food and Drug Admi:	has not been			
2				01
CBC, Platelet Ct, and Diff				01
WBC	5.0	x10E3/uL	3.4 - 10.8	01

The Immune System, Inflammation & Infection

- An immune system response = inflammation.
- Inflammation is part of most all disease processes.
- Inflammation is our body's response to try and fix a perceived threat
- Inflammation? Ask WHY?
- Inflammation is both the "chicken" and the "egg" in complex and/or chronic disease.
- Dr Richard Horowitz: MSIDS.
- Dr Dale Bredesen: Reversing cognitive decline

MSIDS Model of Chronic Disease

Multiple Systemic Infectious Disease Syndrome

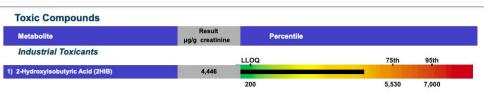
- 1. Infections
- 2. Immune dysfunction
- 3. Inflammation
- 4. Toxicity
- 5. Allergies
- Nutritional & enzyme deficiencies/FM abnormalities in biochemical pathways
- 7. Mitochondrial dysfunction

- 8. Psychological disorders
- 9. Neurological dysfunction
- 10. Endocrine dysfunction
- 11. Sleep disorders
- 12. ANS dysfunction +/- POTS
- 13. G.I. disorders
- 14. Elevated LFT's
- 15. Pain syndromes
- 16. Deconditioning

Dr Dale Bredesen: Reversing Cognitive Decline.

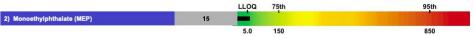
36 point program, to target differential mechanisms resulting in dementia.

- Intermittent fasting
- Gut microbiome health
- Hormone optimization
- Heavy metals
- Nutrients
- Mitochondria
- Optimizing antioxidants & reducing oxidative stress
- Mindfulness, stress reduction and yoga



Toxicity and Detox

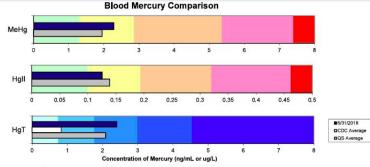
- 1. Avoid contaminants in food and your environment.
- 2. Optimize detox by providing essential cofactors (diet and nutrients).
- 3. Decrease load by reducing inflammation.
- 4. Exercise.
- 5. Testing and detox protocols.



Toxicant Testing

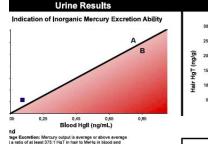
Parent: MTBE/ETBE

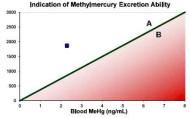
MTBE and ETBE are gasoline additives used to improve octane ratings. Exposure to these compounds is most likely due to groundwater contamination, inhalation or skin exposure to gasoline or its vapors, and exhaust fumes. MTBE has been demonstrated to cause hepatic, kidney, and central nervous system toxicity, peripheral neurotoxicity, and cancer in animals. Very high values have been reported in genetic disorders. Because the metabolites of these compounds are the same. ETBE may be similarly toxic.



Parent: Diethylphthalates

Phthalates may be the most widespread group of toxins in our environment, commonly found in many bath and beauty products, cosmetics, perfumes, oral pharmaceuticals, insect repellants, adhesives, inks, and varnishes. Phthalates have been implicated in reproductive damage, depressed leukocyte function, and cancer. Phthalates have also been found to impede blood coagulation, lower testosterone, and alter sexual development in children. Low levels of phthalates can feminize the male brain of the fetus, while high levels can hyper-masculinize the developing male brain.




	Barbara Matthews		Reference Ranges							
	Results (ng/mL)			QS n=1011; CDC n=1928			Percentile			
	5/31/2018	NA	% Change	Source	Range	Average	50th	75th	90th	95th
ercury— MeHg	2,28	NA	NA	QS	<0,003 to 23,3	1,95	1,2	2,9	5,4	7,4
c Mercury— Hg ^{ll}	0.126	NA	NA	QS	<0.007 to 1.75	0.139	0.10	0.19	0.32	0.46
igT	2.41	NA	NA	CDC	0.038 to 9.96	0.833	0,7	1,7	3	4,6

ference Values: Quicksilver Scientific (QS) Data represents 1011 males and females that have utilized our testing. CDC data represents 1928 females, ages 16 to 49. QS concentrations are higher that CDC because QS analyzes blood a population that already suspects mercury toxicity.

Analysis Information: Mercury speciation was performed at Quicksilver Scientific, and all values are in concentrations of ng Hg per mL of blood

Barbara Matthews

How Do I Find a Functional Medicine Practitioner?

How can I utilize Functional Medicine?

- 1) ADAPT Academy
 - a) <u>https://kresserinstitute.com/directory/</u>
- 2) Institute for Functional Medicine
 - a) <u>https://www.ifm.org/find-a-practitioner/</u>
- 3) Ask the labs
 - a) Genova
 - b) Doctor's Data
 - c) DUTCH
 - d) Great Plains Labs
 - e) QuickSilver Scientific
 - f) IgeneX

Functional Medicine: Sum

- Prevention, disease reversal, health optimization
- Investigating and treating underlying causes
 Multiple causes, chronic health issues
- Extensive lab testing and health history analysis.

Functional Medicine: Sum

- The Fountains: Diet and lifestyle
 - Diet, sleep, stress management, movement

I believe that the greatest gift you can give your family and the world is a healthy you.

Joyce Meyer

🕜 quotefancy

Questions & Comments?

Tressa Breindel, LAc, MSOM <u>InHealthRVA.com</u> 804-601-6698 tressa@InHealthRVA.com

Case Study.

Case study 1: "Elsa"

Patient:

- 47 year old woman
- Difficulty falling and staying asleep
- Low energy, hard to get out of bed, can barely make it to evening, then has evening "surge" of energy
- Feels irritable, easily cries, more so before menses
- Menses is heavy and long, irregular, increased fatigue
- Reflux, bloating and increased gas with eating, alternating C/D
- Low libido, vaginal dryness
- Stiff and achy, esp in mornings
- Cold intolerance, Raynaud's
- Numbness and tingling in fingers
- Hypothyroid

"<u>Elsa," conventional approach</u>

Labs:

- CBC: normal
- CMP: elevated cholesterol, triglycerides, LDL, low HDL
- Thyroid study
 - TSH: high normal
 - T4: low normal
 - T3: low normal
- Hct/Hgb:borderline low
- MCV/MCHC: borderline high
- Everything else "WNL"

Diagnosis:

• No apparent problems

Recommendations:

- Statins (high cholesterol)
- Wellbutrin (mood)
- Birth control (heavy periods)
- Laxatives (constipation)
- Prilosec (heartburn)
- Linzess (IBS)

Advanced diagnostic investigation

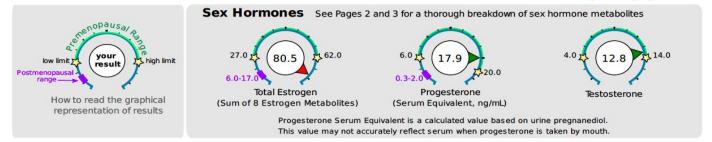
- Ferritin: low normal
- Iron: normal
- TIBC: normal
- Reverse T3
- SHBG: slightly elevated
- ANA: slightly elevated
- DUTCH (see next)
- GI Effects (see next)
- NutraEval (see next)
- IgG Food sensitivities (see next)

dutch

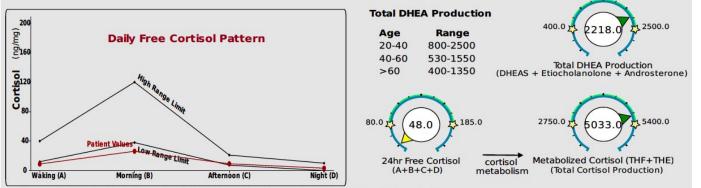
SCIENCE + INSIGHT

A clinical laboratory providing innovative, accurate specialty testing since 1972.

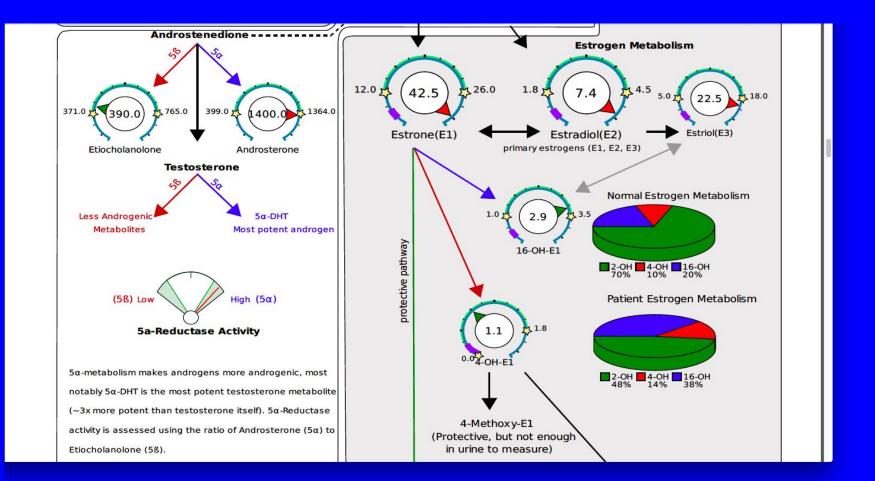
The Great Plains

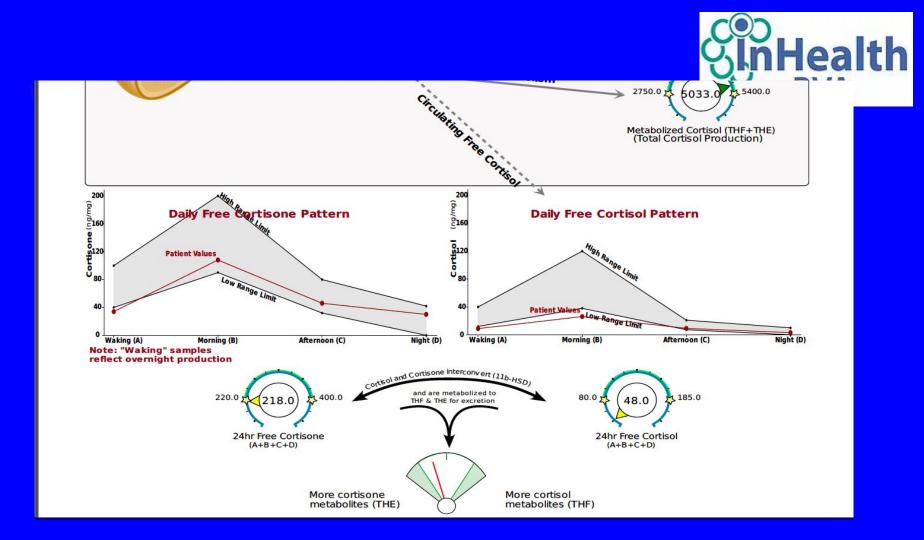

Laboratory, Inc. Health, Metabolism & Nutrition

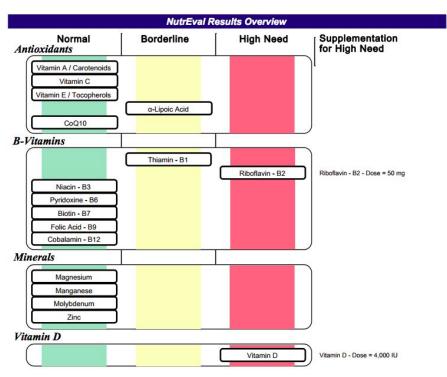
www.greatplainslaboratory.com



Hormone Testing Summary


All units are given in ng/mg creatinine




Adrenal Hormones See pages 4 and 5 for a more complete breakdown of adrenal hormones

Free cortisol best reflects tissue levels. Metabolized cortisol best reflects total cortisol production.

Coco study, "Elee"

D Genova Diagnostics - A. L. Peace-Brewer, PhD, D(ABMLI), Lab Director - CLIA Lic. #34D0655571 - Medicare Lic. #34-8475

alabsorption Marker	s	Refere	nce Range
Indoleacetic Acid (IAA)	(1.5)		<= 4.2
Phen/lacetic Acid (PAA)		0.22) <= 0.12
acterial Dysbiosis M	arkers		
Dihf drox/phen/Ipropionic Acid (DHPPA)	30		<= 5.3
3-Hi/drox/phen/lacetic Acid		8.6	<= 8.1
4-Hi/droxyphenylacetic Acid	(21		<= 29
Benzoic Acid		0.21) <= 0.05
Hippuric Acid	(423		<= 603
Yeast / Fungal Dyst	oiosis Mar	kers	
Arabinose	G		<= 96
Citramalic Acid		7.3	<= 5.8
Tartaric Acid			<= 15
Cellular Energy &	Mitochon	drial Me	tabolites
arbohydrate Metabo			nce Range
actic Acid	5.3		1.9-19.8
Yruvic Acid	(17)	1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7-32
S-OH-Butyric Acid (BHBA)	(2.8	<= 2.8
nergy Metabolism			
Citric Acid		76	40-520
Cis-Aconitic Acid	(17)		10-36
Isocitric Acid		68	22-65
a-Ketoglutaric Acid (AKG)	34		4-52
Succinic Acid (<dl< td=""><td><u>}</u></td><td></td><td>0.4-4.6</td></dl<>	<u>}</u>		0.4-4.6
Malic Acid	(2.8)	<= 3.0
	(5)		<= 15
β-OH-β-Meth∮lglutaric Acid			
HMG)	\checkmark		
B-OH-B-Methylglutaric Acid (HMG) Fatty Acid Metabolism Adipic Acid	\checkmark		<= 2.8
HMG) Fatty Acid Metabolism	1		<= 2.8 <= 2.1
HING) atty Acid Metabolism Adipic Acid Suberic Acid	n (15))	

	erence Range	
anilmandelic Acid	2.4	0.4-3.6
omovanillic Acid	27	1.2-5.3
OH-indoleacetic Acid	(122)	3.8-12.1
Meth/1-4-OH-phen/lgl/col	0.13	0.02-0.22
Inurenic Acid		<= 7.1
uinolinic Acid	33	<= 9.1
nurenic / Quinolinic Ratio	NR	>= 0.44

and the second se			
Reference Ran			
o-Ketoadipic Acid		<= 1.7	
a-Ketoisovaleric Acid	0.62	<= 0.97	
a-Ketoisocaproic Acid	0.47	<= 0.89	
a-Keto-β-Meth¶lvaleric Acid	(22)	<= 2.1	
Formiminoglutamic Acid (FIGlu)		<= 1 .5	
Glutaric Acid	0.45	<= 0.51	
lsovaler/lgl/cine	25	<= 3.7	
Methylmalonic Acid	23	<= 1.9	
Xanthurenic Acid	0.39	<= 0.96	
3-H/drox/propionic Acid	1	5-22	
3-H¶drox¶isovaleric Acid	22	<= 29	

Vitamin Markers

	Refe	rence Range
a-Ketophen/lacetic Acid (from St/rene)	0.39	<= 0.46
a-H∮drox∮isobut∮ric Acid (from MTBE)	64	<= 6.7
Orotic Acid	0.50	0.33-1.01
P∳roglutarnic Acid	32	16-34

Reference Range		
nogentisic Acid	10	<= 19
drox phenflacetic Acid	0.54	<= 0.76

All biomarkers reported in micromoles per deciliter unless stated otherwise.

Nutritionally Essential Amino Acids			
Amino Acid		Reference Rang	
Arginine	10.9	6.0-17.5	
Histidine	97	6.5-13.3	
Isoleucine	10.63	5.79-18.69	
Leucine	213	12.1-36.1	
Lysine	30.1	13.7-34.7	
Methionine	31	2.3-6.5	
Phenylalanine	10.14	6.07-17.46	
Taurine	7.68	4.41-10.99	
Threonine	12.62	6.42-16.32	
Tryptophan	5.46	2.65-6.67	
Valine	31.5	18.3-42.6	

Nonesse	ntial Protein Ai	mino Acias
Amino Acid	" and the second second	Reference Rang
Alanine	39	23-62
Asparagine	6.6	3.5-11.6
Aspartic Acid	0.37	<= 0.67
Cyst(e)ine	11.8	5.9-19.9
γ-Aminobutyric Acid	(I)	<= 0.06
Glutamic Acid	8.9	2.0-14.5
Glutamine	48	44-111
Proline	24	15-57
Tyrosine	9.9	6.2-18.5

Amino	Acids	(Plasma)
Intermediar	v Metabol	ites

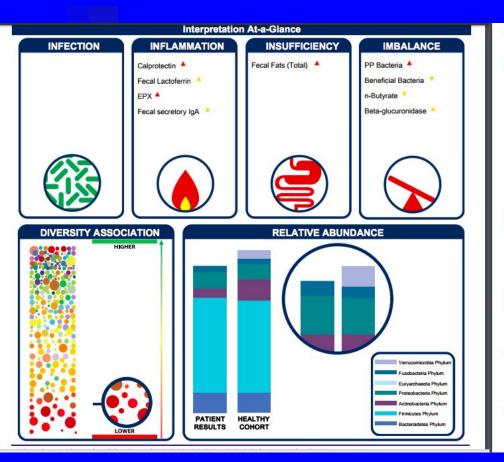
B Vitamin Markers Refer		Reference Rang
a-Aminoadipic Acid	0.15	<= 0.28
a-Amino-N-butyric Acid	3.36	1.76-9.99
β-Aminoisobutyric Acid	0.22	<= 0.72
Cystathionine (0.03	<= 0.09
3-Methylhistidine	0.48	<= 0.78

Urea Cycle Markers

Citrulline	(4.9	1.6-5.7
Omithine	10.58	4.38-15.42
Urea	565	216-1,156

Glycine/Serine Metabolites

Glycine	12	5-23
Serine	5.1	2.1-7.0
Ethanolamine	0.76	0.19-0.78
Phosphoethanolamine	0.20	0.15-0.64
Phosphoserine	e l	<= 0.39
Sarcosine	<u>600</u>	< <mark>= 0.1</mark> 5


Dietary Peptide Related Markers

	Reference Ran	
1-Methylhistidine	1.16	<= 1.64
β-Alanine	0.4	<= 0.7

Methodology: LC/MS/MS

Amino Acid Reference Ranges are age specific.

Commensal Bacteria (PCR)	CFUIg stool	1st	QUIN 2nd	TILE DISTRIE 3rd	UTION 4th	5th	CFU/g stool	
Bacteroidetes Phylum		-						
Bacteroides-Prevotella group	2.9 E9 H		+				3.4 E6 -1.5 E9	
Bacteroides vulgatus	3.8E9 H	F	+	1	6	+ +	<=2.2 E9	
Barnesiella spp.	<dl< td=""><td>-</td><td></td><td>•</td><td>-</td><td></td><td><=1.6E8</td></dl<>	-		•	-		<=1.6 E8	
Odoribacter spp.	6.6 E6	-	•	+	+	-	<=8.0 E7	
Prevotella spp.	1.8 E7 H	-					1.4E5-1.6E7	
Firmicutes Phylum								
Anaerotruncus colihominis	7.2 E7 H	the second se	+	1	ł	+ +	<=3.2 E7	
Butyrivibrio crossotus	3.2E4	-	•				5.5E3-5.9E5	
Clostridium spp.	7.0 E9	-	+	• •		1 -	1.7E8-1.5E1	
Coprococcus eutactus	7.0 E5		+	•			<=1.2 E8	
Faecalibacterium prausnitzii	1.2 E10 H	-	+	+	6		5.8E7-4.7E9	
Lactobacillus spp.	3.7E8	-	+ +		E.		8.3E6-5.2E9	
Pseudollavonifractor spp.	3.2E8 H	-	1		E		4.2E5-1.3E8	
Roseburia <mark>spp</mark> .	1.0 E9	-	•		r	, -	1.3E8-1.2E1	
Ruminococcus spp.	8.9E7 L	•					9.5E7-1.6E9	
Veillonella spp.	2.4E7	-	,	+	-	•	1.2E5-5.5E7	
Actinobacteria Phylum								
Bilidobacterium spp.	4.1E7		1		-	+	<=6.4 E9	
Bilidobacterium longum	8.7 E6	-	•	-		+ -	<=7.2 E8	
Collinsella aerofaciens	<dl l<="" td=""><td>•</td><td>-</td><td></td><td>i.</td><td></td><td>1.4E7-1.9E9</td></dl>	•	-		i.		1.4E7-1.9E9	
Proteobacteria Phylum								
Desulfovibrio piger	<dl< td=""><td></td><td>1</td><td>+</td><td>-</td><td>+</td><td><=1.8E7</td></dl<>		1	+	-	+	<=1.8 E7	
Escherichia coli	8.7E7 H	-	+	I	F		9.0E4-4.6E7	
Oxalobacter formigenes	8.2 E5	-	-	•	r		<=1.5 E7	
Euryarchaeota Phylum							1.0	
Methanobrevibacter smithii	<dl< td=""><td>-</td><td></td><td>-</td><td>•</td><td>+ -</td><td><=8.6E7</td></dl<>	-		-	•	+ -	<=8.6 E7	
Fusobacteria Phylum								
Fusobacterium spp.	1.8 E5	-	1	+	-	+ + -	<=2.4 E5	
Verrucomicrobia Phylum							1000	
Akkermansia muciniphila	<dl< td=""><td></td><td>•</td><td>1</td><td>E</td><td>+ +</td><td>>=1.2E6</td></dl<>		•	1	E	+ +	>=1.2 E6	
Firmicutes/Bacteroldetes Ratio								
Firmicutes/Bacteroidetes (F/B Ratio)	7 L	+	+		<u>.</u>	1	12-620	

Elsa: "Findings & Recommendat RVA"

- Treat the gut microbiome/infections to treat the thyroid
 - The root of inflammation
- Support and balance the endocrine (hormone) system
 - Adrenal, thyroid, sex hormones
- Insure sleep
 - There is no substitute or supplement for sleep
- Treat vitamin/mineral status for biochemical optimization
 - Nutrients are the backbone of the trillions of biochemical reactions in our body
- Support hormone, toxin and xenobiotic detox.
 - Chronic health conditions, aging, stress, inflammation/infection and poor diets compromise our ability to detox and increase our detox load.

DUTCH hormone:

• Support hormone balance, synthesis and metabolism.

- Estrogen dominance
 - Poor Phase I detox (high 4-OH E1, low 2-OH E1)
- Low testosterone
- Low daytime cortisol, preference for cortisone metabolites
 - Indirect measurement of thyroid function (HYPO)
- Elevated nighttime cortisol

"Elsa: "Findings & Recommendations

Estrogen dominance, poor estrogen

<u>metabolism:</u>

- DIM (200 mg, BID)
- Progon B (10 drops, orally, before bed)
- Calcium d-glucarate

Support Thyroid

• T-150, 2, am 30 minutes breakfast

Low testosterone:

• Fenugreek, maca and pir

<u>Cortisol</u>

- Day: Gaia HPA homeostasis
 - 2am, 2 afternoon
- NIght: phosphatidylserine, ashwagandha

30 minutes before bed

"<u>Elsa:" Findings & Recommendat</u>

NutraEval:

- Low mag, B1, 2, vitamin D, methylmalonic acid
- Elevated markers for gut dysbiosis, poor absorption/digestion
- Poor mitochondrial function
- Low Omega 3 status
- Detox:
 - OptiCleanse (Xymogen): 1 shake/day, for 1-3 months
 - Followed by several months of liver detox supplement

- Vitamins to address **nutrient deficiencies**
 - Supports energy production, hormones, detoxification, methylation, immune system, nervous system function
 - Recheck Vitamin D levels after 3-5 months
- Mitochondria:
 - L-carnitine, 500mg, BID
 - Nicotinamide riboside: 1-2, am 30 minutes before breakfast
- Omega 3:
 - 3 grams of high DHA/EPA cod liver oil for 3 months, then recheck
- Incorporate gut/digestion information when looking at GI Effects...

"Elsa: "Findings & Recommendat

- Digestive enzymes, bile and hydrochloric acid support for digestion
- First, treat overgrowth:
 - Herbal antimicrobials for 6 weeks
- Hypoallergenic diet
 - Paleolithic diet 0
 - Weston A Price \cap
 - Whole foods, unprocessed, flour/sugar/chemical and 0 preservative free
 - Filtered water 0
- Bacterial overgrowth, high \bigcirc methanogens
- - Soluble fiber, prebiotics
 - Butyrate (Tesseract) \bigcirc
 - **Probiotics** (rotate) and probiotic foods
- Low elastase, elevated fat and protein in stool
- Kraut, kimchi, kombucha, fermented dairy (try goat, sheep)

GI Effects:

- Low butyrate and SCFA (short chain fatty acids)

IgG Food sensitivities Test

- 3+ foods: eliminate for 4 months, follow hypoallergenic diet
- Once all symptoms resolved, feel fully healthy
 - Can add in 2+ foods, one at a time, every 4-5 days, to test for reactivity

"Elsa: "Follow up: 6 months

- Digestive symptoms resolved, with dietary maintenance
 - Tapered off prilosec, Linzess
 - Tapered off of digestive support after 6 months, still uses some enzymes and digestive support when strays from diet
- Sleep much improved
 - Uses kavinace and ashwagandha for intermittent need for sleep support
- Energy much improved
- No more excessive fatigue and mood irregularity with period, flow normal
 - Period is somewhat irregular as approaching menopause, but is no long
 - Off of birth control, antidepressant
- Numbness, tingling and Raynaud's resolved
- Thyroid: numbers and symptoms resolved
- Mood: well

"Elsa: Follow up

- Cholesterol normalized
 - Off of statins
- On-going therapies:
 - Supplements for sleep
 - Use of supplements as
 - Acupuncture
 - Meditation
 - Exercise
 - Counseling
 - Massage

Tressa Breindel, LAc, MSOM InHealthRVA.com 804-601-6698 tressa@InHealthRVA.com

Comments?

Cold and Flu season

Anti-virals

- Andrographis 500-1000 mg, every 3-4 hours
- V-Clear (Integrative Therapeutics); 2 dropperfuls 3-4x/day

Sinuses:

Both, 2 sprays/nostril, 2-3x/day

- Colloidal silver nasal spray
- X-Clear (xylito) nasal spray

Cold and immune support:

- Elderberry: 1-2 tsps, every 3-4 hours
- Zinc lozenges: every 3 hours
- Echinacea/goldenseal tincture: 2-4 dropperfuls/every 3-4 hours
- ColdQuell: 5-6 capsules, every 3 hours

Underlying mechanisms >> Disease name

Same health problem, different causes.

- Different health problem, same causes, The same health issues can have Different diseases can have similar underlying causes different underlying causes, and hence different expressions and Eq: different autoimmune Ο diseases responses to treatments.
 - IBS \bigcirc
 - Autoimmune disease \bigcirc
 - CVD \bigcirc
 - Migraine Ο
 - PMS \bigcirc
 - Domontia/Alzhoimor's \cap

Functional Medicine: What to exp

• Longer appointments

- First appointments are 1-3 hours and include a complete health history
- Personalized approach, personalized attention
 - Differentiation between disease processes that may lead to similar symptoms or diagnosis
 - Individualized therapeutic prescriptions
 - The therapeutic processes that help your arthritis may differ from the process of someone else with arthritis

Health

• Lab testing

- Traditional labs
- Functional medicine labs

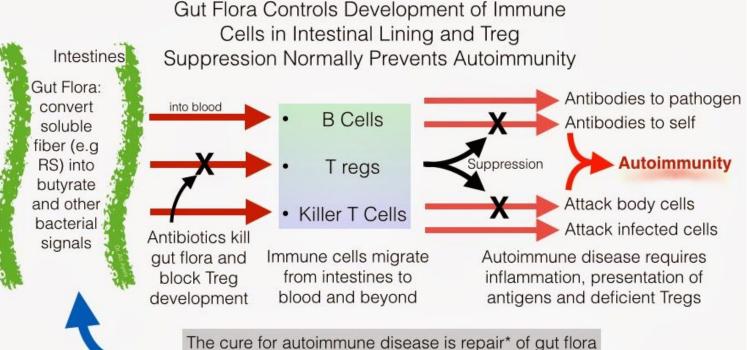
Functional Medicine: What to exp

- Patient involvement, empowerment and responsibility
 - This is a healing journey, which may require you to change fundamental ways you have eaten and lived and to adopt therapeutic regimens that require commitment and motivation

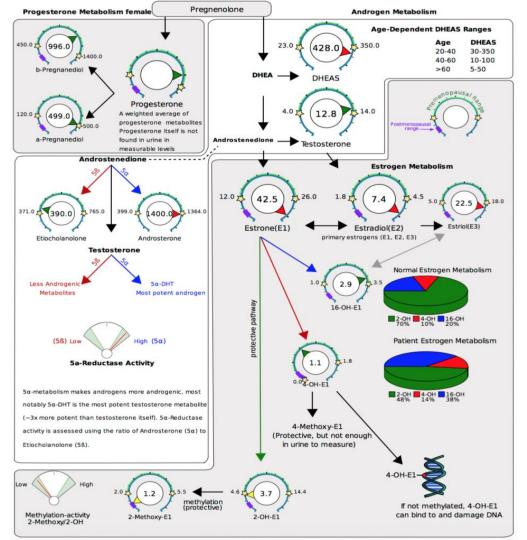
Health

• Health optimization

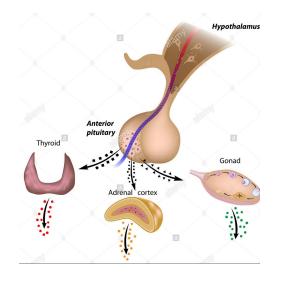
 In peeling back the layers of variables that lead to your health condition, expect resolution of health problems, renewed vitality and enhanced quality of life.


The Functional Medicine Process

A health journey


- 1. Take a full history
- 2. Review and integrate former medical record
- 3. Order further testing (as needed, patient ability to complete)
 - a. May begin some foundational protocols while waiting for test results to return, including diet, sleep, stress management and anything indicated from former testing that is not already being done.
- 4. Review and integrate new lab findings
- 5. **Begin protocols to address dysregulation** indicated by history, symptoms and lab findings
- 6. **Regular checkups, adjust protocols** based on therapeutic response, additional testing as necessary.

The Gut Microbiome



and redevelopment of immune suppression/tolerance. *Dairy probiotics help only temporarily

Advanced hormone analysis

The Functional Medicine Process

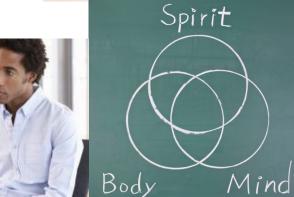
Diet and lifestyle: The foundation of all health practices

- Whole foods, unprocessed **diet**
- Sleep: 7-9 hours/night
 - Regulated circadian rhythms
- **Exercise**: cardio, strength and stretching
- Non-exercise Activity Thermogenesis (NEAT): Move, don't sit for long periods of time.
- Healthy relationships, social connections and support
- Mindfulness: meditation, communication
 - Meditation
 - Quiet time, slowing down
 - Heartmath

Functional medicine: What is it g RVA for? <u>3 levels:</u>

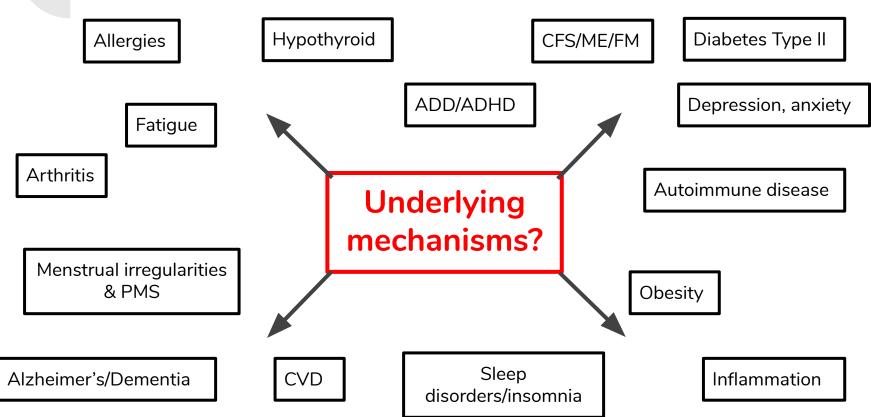
- **1**. Wellness and preventative care
- 2. Health optimization
 - a. Athletics, optimal aging, optimal wellness
- 3. Disease reversal and improved management
- 4. Illness

<u>Functional medicine: What is it not</u> <u>good for?</u>


- When FM isn't enough:
 - Acute care
 - Trauma, sepsis, heart attack.
 - Cancer
 - Integrative oncology
- FM includes the proper use of pharmaceuticals:
 - Infection
 - Symptom management
 - Disease management
 - Acute health management
 - Patient ability for compliance

While FM aims to understand and address underlying causes, not all physiological states of health dysregulation can be reversed or restored to how they were before dysregulation occurred.

The Functional Medicine Process


- Wholistic care
 - Acupuncture
 - Nutrition consulting
 - Counseling
 - Personal training
 - Cranial-sacral
 - Physical therapists
 - Massage therapists

Multiple, Underlying Caseus

